Modules with the closed sum property
نویسندگان
چکیده
منابع مشابه
Modules with copure intersection property
In this paper, we investigate the modules with the copure intersection property and obtained obtain some related results.
متن کاملThe unit sum number of discrete modules
In this paper, we show that every element of a discrete module is a sum of two units if and only if its endomorphism ring has no factor ring isomorphic to $Z_{2}$. We also characterize unit sum number equal to two for the endomorphism ring of quasi-discrete modules with finite exchange property.
متن کاملthe unit sum number of discrete modules
in this paper, we show that every element of a discrete module is a sum of two units if and only if its endomorphism ring has no factor ring isomorphic to $z_{2}$. we also characterize unit sum number equal to two for the endomorphism ring of quasi-discrete modules with finite exchange property.
متن کاملOn the decomposition of noncosingular $sum$-lifting modules
Let $R$ be a right artinian ring or a perfect commutativering. Let $M$ be a noncosingular self-generator $sum$-liftingmodule. Then $M$ has a direct decomposition $M=oplus_{iin I} M_i$,where each $M_i$ is noetherian quasi-projective and eachendomorphism ring $End(M_i)$ is local.
متن کاملThe Artinian property of certain graded generalized local chohomology modules
Let $R=oplus_{nin Bbb N_0}R_n$ be a Noetherian homogeneous ring with local base ring $(R_0,frak{m}_0)$, $M$ and $N$ two finitely generated graded $R$-modules. Let $t$ be the least integer such that $H^t_{R_+}(M,N)$ is not minimax. We prove that $H^j_{frak{m}_0R}(H^t_{R_+}(M,N))$ is Artinian for $j=0,1$. Also, we show that if ${rm cd}(R_{+},M,N)=2$ and $tin Bbb N_0$, then $H^t_{frak{m}_0R}(H^2_...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematical Forum
سال: 2014
ISSN: 1314-7536
DOI: 10.12988/imf.2014.48151